
Problem List

From Algebras, Lattices and Varieties: a Conference in Honor of

Walter Taylor, held at the University of Colorado, 15–18 August, 2004

Most of these problems were discussed at a Problems Session at the end of the
conference. Though Walter did not pose any problems at the time, he subsequently
discovered and contributed to this collection a treasure trove of ten problems that
he had lectured on, but not published, 18 years earlier. These appear, with his
notes on their status as of 2005, at the end of the list as Problems 18–27.

− − − −

Discussed by George Bergman (gbergman@math.berkeley.edu):

Problem 1 (Hotzel [3]). If M is a monoid such that the lattice of left congruences
on M has ascending chain condition, must M be finitely generated?

Hotzel asks this for semigroups and right congruences; his and the above version
are equivalent.

Left congruences on M are equivalence relations closed under all left trans-
lations; these are thus equivalent to congruences on the free left M -set on one
generator.

When M is a group, any left congruence is the decomposition of M into the
left cosets of some subgroup, so the lattice of left congruences is isomorphic to the
subgroup lattice. Thus, finite generation of a group is equivalent to the compactness
of the greatest element in the lattice of left congruences, while ACC on that lattice
is the stronger condition that all its elements be compact.

On a general monoid, there are several interesting sorts of left congruences. If a
left congruence C is generated by pairs of the form (a, 1), then C is determined
by MC = {a ∈ M | (a, 1) ∈ C}. The subsets MC ⊆ M that arise in this way
are precisely the submonoids closed under left division, i.e., such that if ab and a
belong to the submonoid, so does b. Hence compactness of the greatest element of
the left congruence lattice is equivalent to finite generation of M as a left-division-
closed submonoid of itself. This can hold without M being finitely generated as a
monoid. E.g., if M is the additive monoid of nonnegative elements of Z× Z under
lexicographic order, it is generated in this sense by (0, 1) and (1, 0) , but requires
(0, 1) and infinitely many of the elements (1,−n) to generate it as a monoid.

A Rees left congruence C is the relation one gets by taking a nonempty left ideal
I ⊆ M (a subset closed under all left translations) and making it one congruence
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class (a “zero element” of the left M -set X/C), while making all other congruence
classes singletons. In the submonoid of Z× Z noted above, the principal ideals
generated by (1, 0), (1,−1), (1,−2), . . . form a strictly ascending chain, so the
Rees left congruences do not satisfy ACC.

Finally, for every c ∈M, the relation c⊥ = {(a, b) | ac = bc} is a left congruence.
Kozhukhov [4] obtains several results toward an affirmative answer to Problem 1;

in particular, he shows that ACC on right and left congruences together do imply
finite generation. (The non-specialist should read [4] with [1] in hand for notation
and terminology.)

An appealing approach to Problem 1 is the following. Note that every left
congruence C on M contains a greatest two-sided congruence (congruence in the
variety of monoids) C int. Now if M gave a negative answer to the question, then
by ACC on left congruences it would have a left congruence C maximal for the
property that M/C int was non-finitely-generated. Thus, adjoining any new pair to
C would yield a congruence C ′ such that the action of M on M/C ′ was essentially
the action of some finitely generated submonoid of M ; a situation from which one
might be able to get a contradiction, or ideas for constructing an example.

Since monoids are essentially unary clones, one might ask more generally whether
an arbitrary clone for which every free object on finitely many generators has ACC
on congruences has to be finitely generated. That this is not so is shown by the
example of the clone of operations of k-vector-spaces, for k a fixed infinite field.

Problem 2 (Wasserman [5]). Is there a nontrivial lattice that is not generated by
the union of two proper sublattices?

Wasserman notes that such a lattice would have no minimal generating set,
would admit no map onto a nontrivial finite lattice, and would have no maximal
proper sublattice. An example with all three of these properties that is nonetheless
not of the desired sort may be obtained by taking an infinite binary tree with root
at the top, and throwing in a bottom element to make it a lattice.

It was noted at the conference that a Jónsson lattice would yield an affirmative
answer to Problem 2. Jónsson lattices of regular cardinality are known not to
exist [6]; the singular-cardinality case is open.

Freese, Hyndman and Nation [2] provide conditions under which the answer to
Problem 2 is negative. In particular, if L is a finitely atomistic semimodular lattice
or an atomistic modular complete lattice then L is generated by the union of two
proper sublattices.
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Discussed by Stan Burris (snburris@thoralf.uwaterloo.ca):

Given a class A of algebras let a(n) be the number of algebras in A that have
size n (counting up to isomorphism). Walter Taylor called the function a(n) the
fine spectrum of A in the case that A is a variety.

In the study of asymptotic density in [2] we require that the finite members of A
have the Unique Factorization Property (UFP). Then with p(n) the count function
for the indecomposable members of A we have∑

n≥1

a(n)n−x =
∏
n≥2

(
1− n−x

)−p(n)
.

We assume in all questions below: the finite members of A have the UFP.

An important condition in the study of logical limit laws is that the function
A(x) =

∑
n≤x a(n) have regular variation (at infinity of index α ), which means

lim
t→∞

A(tx)
A(t)

= xα .

Recall the UFP assumption:

Problem 3. What can we say about a (locally finite) variety A when A(x) has
regular variation?

Jason Bell [1] proved that if P (x) =
∑

n≤x p(n) has polylog growth, that is,
P (x) = O

(
(log x)c

)
, then A has a first-order 0–1 law.

Problem 4. If A is a (locally finite) variety of algebras, what do Bell’s conditions
say about A ?

In [1], p. 228, it is proved that if A(x) ∼ Cxα then A has a first-order limit
law.

Problem 5. If A is a (locally finite) variety of algebras with A(x) ∼ Cxα , what
can we say about A ?
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Discussed by Brian Davey (b.davey@latrobe.edu.au):

Here are two old problems that are still of interest. Some progress has been
made on the second. None has been made on the first.

Problem 6. Is dualisability of a finite algebra of finite type decidable?

Problem 7. Does full dualisability imply strong dualisability?

For details see:
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Discussed by Klaus Denecke (kdenecke@rz.uni-potsdam.de):

Let τ = (ni)i∈I be a type of algebras, indexed by a set I , with operation
symbols fi of arity ni . Let X = {x1, x2, x3, . . .} be a countably infinite set of
variables. We denote by Wτ (X) the set of all terms of type τ.

Any mapping σ : {fi | i ∈ I} → Wτ (X) which preserves the arity is called a
hypersubstitution. In a canonical way, each hypersubstitution σ can be extended to
a mapping σ̂ : Wτ (X) →Wτ (X) . The set Hyp(τ) of all hypersubstitutions of type
τ forms a monoid with respect to the composition operation σ1 ◦h σ2 := σ̂1 ◦ σ2 ,
where ◦ is the usual composition of mappings, and the identity hypersubstitution
σid mapping each fi to fi(x1, . . . , xni) .

If A := (A; (fA
i )i∈I) is an algebra of type τ, then for any σ ∈ Hyp(τ) the

algebra σ(A) := (A; (σ(fA
i )i∈I) is called a derived algebra.

For a variety W of algebras of the same type we denote by σ(W ) the class of
all algebras derived from algebras in W by σ. The relation

R := {(σ,W ) | σ ∈ Hyp(τ) and W ∈ L(V ) and σ[W ] ⊆W}

defines a Galois connection (ι, µ) between Hyp(τ) and the lattice L(V ) of all
subvarieties of V with the corresponding maps ι and µ defined by

µ(m) := {W ∈ L(V ) | ∀σ ∈ m ((σ,W ) ∈ R)}
and

ι(l) := {σ ∈ Hyp(τ) | ∀W ∈ l ((σ,W ) ∈ R)},

for any m ⊆ Hyp(τ) and any l ⊆ L(V ) .
Use this Galois connection to answer the following question:

Problem 8. What monoids of hypersubstitutions give lattices of varieties satisfying
interesting lattice properties and conversely?
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Discussed by Martin Goldstern (goldstern@tuwien.ac.at):

Problem 9. Let C be a precomplete clone on an infinite set X (i.e., a coatom in
Clone(X) , the lattice of all clones on X). Write C(1) for the clone generated by
the unary functions of C .

Must the interval [C(1), C] (in Clone(X)) have cardinality 22|X| ?
More generally, for which clones C is the interval {D : D(1) = C(1)} small?

Problem 10. Is Clone(X) dually atomic? That is, is every proper clone below a
coatom in the lattice Clone(X) ?

The answer is “yes” if X is finite (easily), and “no” if X is countable, assuming
CH, see [Goldstern-Shelah 2005]. Nothing is known for uncountable X .

Background: See [Pöschel-Kalužnin 1979] for many general results on clones,
and an extensive bibliography of older papers. Most results in clone theory are
established only for finite base sets; see [Szendrei 1986] for a survey of such results.

The clone lattice on a fixed infinite set X is very large (of size 22|X|) , and in
fact many naturally defined subsets (such as the set of its coatoms) are of the same
size, see [Rosenberg 1976]. It is naturally partitioned via the map C 7→ C(1) ; each
equivalence class is a closed interval (the “monoidal interval of C ”). For many
clones C it is known that C ’s monoidal interval is very large; for a few clones
(e.g., the clone generated by the permutations) this interval is known to be small,
and its lattice-theoretic structure is known. However, there are no general methods
to investigate the monoidal intervals. Problem 9 expresses our ignorance of the
structure of the clone lattice and of the monoidal intervals.

Problem 10 is a very old question that tests our understanding of the clone lattice
on infinite X ; for countable sets, it was already asked by Gavrilov in [Gavrilov 1959,
page 22/23]. This question is also listed as problem P8 in [Pöschel-Kalužnin 1979,
page 91].
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Discussed by Jennifer Hyndman (hyndman@unbc.ca):

Problem 11.

(1) Does there exist a type of primitive positive formula whose presence implies
that a finite dualizable algebra is not strongly dualizable?

(2) Can primitive positive formulæ be used to classify which finite algebras are
or are not strongly dualizable?

Primitive positive formulæ arise in the study of duality theory in the lifting of
homomorphisms. For M a finite algebra and B ≤ A ≤ MI if h : B → M
does not lift to some h′ : A → M then h is irresponsible with respect to some
primitive positive formula. That is, there is some primitive positive formula ψ in
the language of M on n free variables defining an n -ary relation where for some
a1, . . . , an in B the relation ψ(a1, . . . , an) holds in A but ψ(h(a1), . . . , h(an))
does not hold in M .

Lampe, McNulty and Willard [3] show that a finite dualizable algebra with
enough algebraic operations is strongly dualizable. In contrast, a finite unary
algebra with a primitive positive formula defining a pp-acyclic relation does not
have enough algebraic operations and does not have a finite basis for its quasi-
equations [2].

Beveridge, Casperson, Hyndman and Niven [1] define, for M a finite algebra and
A a subalgebra of a power of M , the concept of a dense subset of FragD(A), the
algebraic operations on finite subalgebras of A that extend to A . If there exists
a nonempty, dense subset of FragD(A) that does not contain any projections or
constant homomorphisms, then M is not strongly dualizable. On finite unary al-
gebras the existence of a transitive, antisymmetric, almost-reflexive binary relation
defined by a primitive positive formula can be used to construct the appropriate
dense set to show the algebra is not strongly dualizable.
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Discussed by Ralph McKenzie (mckenzie@math.vanderbilt.edu):

Problem 12 (Miklós Maróti, personal communication, July 2004).

(1) Does there exist an algorithm to: input a finite system of operations on a
finite set and determine if the generated clone has finite degree (i.e., is the
set of admissible operations for one finitary relation)?

(2) Does there exist an algorithm to: input a finitary relation on a finite set
and determine if the clone of admissible operations is finitely generated?
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Discussed by George McNulty (mcnulty@math.sc.edu):

Given a variety V of algebras of some finite signature, for each natural number n
there are, up to isomorphism, only finitely many algebras of cardinality less than n
that fail to be in V . For each such algebra pick an equation of smallest length that
is true in V but fails in the algebra. In this way a finite set of equations has been
selected. Let βV(n) be the length of the longest equation in this finite set. Recent
work of Székely [7], Kun, Vertesi, and Kosik has focussed on the asymptotics of this
function. Every finitely based variety of finite signature has a β that is eventually
dominated by a constant function. Conversely, for locally finite varieties V , it is
not hard to see that if βV is dominated by a constant, then either V is finitely
based or it is inherently nonfinitely based.

Problem 13 (S. Eilenberg and M. P. Schutzenberger 1976 [4]). Is it true V is
finitely based whenever V is a variety generated by a finite algebra of finite signature
such that βV is dominated by a constant?

The answer is “yes” when V is generated by a finite semigroup, as shown by
Sapir [5]. Robert Cacioppo in his dissertation [1] and in [2, 3] has provided further
evidence that this problem may have a positive solution.

The paper of Eilenberg and Schutzenberger concerned pseudovarieties. The con-
nection is as follows. A pseudovariety is said to be finitely based provided it is
the class of all finite algebras belonging to some finitely based variety (warning:
this variety may be larger than the variety generated by the pseudovariety). For a
variety V , the contention that βV is dominated by a constant is equivalent to the
contention that the finite members of V comprise a finitely based pseudovariety.

For the next problem, let R denote the topological space of real numbers. Walter
Taylor in [6] proved that there is no algorithm which upon input of a finite set of
equations will decide whether the set of equations is compatible with R ; that is
whether R can be equipped with continuous operations to produce a model of the
set of equations. An important step in Taylor’s argument is that the system of real
functions x+y, x−y, x·y, sin(π

2x), cos(π
2x),

√
cos(π

2 sin(π
2x)), and the constant

function 1 is actually determined up to topological and algebraic isomorphism by
a finite set of equations. Call such a system of continuous operations finitely
determined for the topological space R .

Problem 14.

(1) Is there a finite system of continuous operations which is finitely determined
with respect to R and which includes x + y, x − y, x · y, sinx, and 1 ?
What about replacing sinx with ex ?

(2) Is there a finite system of continuous operations which is finitely deter-
mined with respect to R and which includes a conjugated pair of decoding
functions?

Here, F and G are conjugated decoding functions provided for every pair 〈a, b〉
of real numbers there is a real number c so that F (c) = a and G(c) = b .



8 PROBLEM LIST

An affirmative answer to the first question (with sinx ) might provide a simpler
route to Taylor’s compatibility result. The availability of conjugated decoding
functions might lead to a direct way to simulate computations in the clone of
continuous operations on R .

Similar problems could be formulated for other topological spaces.
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Discussed by Luis Sequeira (lfsequeira@fc.ul.pt):

Problem 15. Is every finite algebra having a “pre-near-unanimity” term dualiz-
able?

Problem 16. Does every finite algebra which is dualizable and generates a congruence-
modular variety have a “pre-near-unanimity” term?

Discussed by Ross Willard (rdwillar@uwaterloo.ca):

A finite algebra in a finite language is said to be inherently nonfinitely q -
based if it does not belong to any locally finite, finitely axiomatizable quasivariety.
J. Lawrence and I gave examples of such algebras, each of which generates a variety
in which only type 1 occurs (in the sense of tame congruence theory). Recently,
M. Maróti and R. McKenzie have shown that no example can generate a variety
which omits types 1 and 2 .

Problem 17. Does there exist an inherently nonfinitely q -based (finite) algebra
whose generated variety omits type 1 ?

Contributed by Walter Taylor (wtaylor@euclid.Colorado.edu):

In September, 1986, I prepared this (until now unpublished) list of ten prob-
lems for presentation to seminars (at the University of Colorado, the University of
Hawaii, and McMaster University). I recently found one surviving copy. I tran-
scribed each problem, almost exactly as it was stated then, and after each problem I
have added comments and updates for 2005. They were then reformatted somewhat
for this problem list.
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Six of the problems (numbers 18, 19, 24, 25, 26, 27) remain unsolved (although a
very significant advance was made in the case of Problem 25). Each of the remaining
four (Problems 20, 21, 22, 23) has been solved in at least a narrow sense, although
each of them points toward further questions and further discoveries.

I wish to thank George Bergman, Ralph Freese and George McNulty for many
useful comments on the presentation of this material.

Problem 18 (J. Mycielski, 1964—see [31]). Is every equationally compact distribu-
tive lattice L a retract of some compact topological lattice?

The corresponding assertion has been proved ad hoc for Boolean algebras, for
Abelian groups, for vector spaces over a field, and for mono-unary algebras. It fails
for bi-unary algebras and semigroups. It also remains unknown for groups.

An algebra A is called weakly equationally κ -compact iff the following holds for
every set Σ of equations in the similarity type of A with |Σ| < κ (and with no
restriction on the number of variables appearing in Σ ): if every finite subset of Σ
is satisfiable in A , then Σ is satisfiable in A. An algebra A is called equationally
κ -compact iff 〈A, a〉a∈A ( A with all constants added to the similarity type) is
weakly equationally κ -compact, and equationally compact iff it is equationally κ -
compact for every κ. It is known that if A is equationally |A|++ -compact, then
A is equationally compact.

If A ⊆ B , then a retraction of B onto A is a homomorphism f :B −→ A such
that f |A is the identity on A . If such an f exists, then we say that B retracts onto
A. An algebra A is equationally compact iff every ultrapower of A retracts onto
A, iff every elementary extension of A retracts onto A . A compact topological
algebra is an algebra 〈A,Ft〉t∈T equipped with a compact Hausdorff topology T
such that each Ft is continuous as a map from Ant (in the Tychonov product
topology) to A . An easy application of the definition implies that every compact
topological algebra is equationally compact. It is also easy to check that the class
of equationally compact algebras is closed under the formation of retracts; hence
every retract of a compact topological algebra is equationally compact. Mycielski’s
question asked whether this condition characterizes equational compactness. The
answer turned out to be no in general, but nevertheless the question remains for
such simple classes as distributive lattices.

2005 Comment. There has been no progress on any version of the above prob-
lem since around 1979. Mycielski’s original problem was stated in 1964—see [31,
Problem 484]. The mentioned negative solutions for bi-unaries and for semigroups
may be found in two 1972 papers of W. Taylor—[39, page 111] and [40], respec-
tively. A negative solution for groups was given1by R. T. Kel’tenova in 1976—see
[20]—although apparently I did not know of it in 1984. D. K. Haley obtained a neg-
ative answer for rings in 1979—see [14]. The positive solution for Abelian groups
(which in fact seeded the whole theory) was given by J.  Loś in 1957—see [22]. Pos-
itive solutions for vector spaces and for Boolean algebras were given by B. W ↪eglorz

1The Kel’tenova reference is in a journal from Alma-Ata that is not easily accessible to me; I

rely here on Mathematical Reviews.



10 PROBLEM LIST

in 1966—see [50]. S. Bulman-Fleming gave a positive solution for semilattices in
1972—see [5].

Background to Problem 19. It turns out that a variety V has the property
that each of its algebras is embeddable in an equationally compact algebra iff V
is residually small, i.e. there is an upper bound on the cardinality of subdirectly
irreducible algebras occurring in V .

Problem 19 (W. Taylor, 1972). Does every residually small variety also have the
property that each of its algebras is embeddable in a compact topological algebra?

It would be enough, of course, to prove that each subdirectly irreducible algebra
in V is so embeddable. For known residually small varieties, there is usually an
obvious construction, e.g., if all the subdirectly irreducible algebras are finite. But
for Abelian groups there is a very special construction: Zp∞ gets embedded into
the circle group.

2005 Comment. Nothing further is known on the above problem. The original
statement of the problem was in 1972—see W. Taylor [41, p. 43]. The theorem
quoted as background is from [41]. In the Abelian group case, the Bohr compactifi-
cation yields an embedding of each such group into a compact Abelian group. The
same construction works for modules over an arbitrary ring—see Warfield [49].

Problem 20 (Taylor, from about 1976). Does there exist an interesting finite set
of identities which is satisfiable on any unusual (but well-known) topological space?

A set Σ of identities may be called interesting if Σ cannot be satisfied on a set of
more than one element by using projection functions for its operations. (This means
that Σ does not represent the least element of the Neumann-Garćıa-Taylor lattice.)
An unusual space is one where the classical topological-algebraic constructions are
not (and cannot be) encountered. A good test case is a two-dimensional manifold
of genus 2 (i.e., the surface of a two-holed torus). (I have added the “well-known”
proviso, because there is a method, due to S. Świerczkowski, of freely constructing
spaces that satisfy any consistent finite Σ. These aren’t what we are looking for.)

2005 Comment. For the test case mentioned here—the surface G2 of genus
two—the best possible answer was published by W. Taylor in 2000—see [45]. A
theory Σ is modelable with continuous operations on G2 only if Σ is undemand-
ing, i.e. Σ can already be modeled with constant and projection operations. (And
“demanding” turns out to be the right notion—not the “interesting” that we orig-
inally had in the statement of Problem 20.) The same result has been proved also
for a number of other spaces: figure-eight, spheres Sn other than for n = 1, 3, 7,
and spaces that are similar to these in cohomology. The results may be found in
W. Taylor [45]. The method clearly extends further than it was taken in [45], but
it isn’t clear exactly how far. At this point it seems that, if there is an interesting
example, it is arcane and hard to find.

When I wrote loosely, twenty years ago, of “classical constructions,” I was think-
ing of spaces where algebraic structure can be imposed through such well-known
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methods as matrix multiplication, quaternion operations, groups on cubic curves,
lattice and median operations arising from the natural ordering of R , and the like.
One thrust of the question was whether some further methods might be found; such
further methods, if any, remain undiscovered. In fact [45] rendered their existence
less likely. From this point of view, progress on Problem 20 has been disappointing.

The varietal interpretability lattice L was introduced by W. D. Neumann in [33]
and studied by O. Garćıa and W. Taylor in [13].

For the mentioned construction of S. Świerczkowski, see his paper [38]. See also
J. P. Coleman [8].

Problem 21 (Garćıa and Taylor, 1984). Does the lattice of interpretability have a
least element greater than 0 ?

. . . It is known that 0 is ∧ -irreducible, and there are either no atoms or a single
atom . . . . In the case of no atoms, there would be a countably infinite descending
sequence that meets to 0 . . . .

2005 Comment. There is a countably infinite descending sequence that meets
to 0 . A direct construction was given by W. Taylor in 1988—see [44]. Further
interesting non-trivial infinite meets (implying non-existence of certain covers) may
be found in R. McKenzie and S. Świerczkowski [27].

Problem 22 (Garćıa and Taylor, 1984). Find any covering whatever in the lattice
of interpretability.

Note of caution here: if one insists that Γ1 = a single constant C is different
from Γ2 = a unary operation obeying F (x) ≈ F (y) , then indeed Γ1 covers Γ2 .
(This is a book-keeping quibble, rather than a genuine example. We defined things
in Garćıa and Taylor in such a manner that this doesn’t occur.)

2005 Comment. R. McKenzie discovered a cover of Boolean algebras in 1993; see
[25]. His method was adapted and extended for further examples by J. Hyndman
in 1996–7. See [16, 17]. She also proved that L has no subinterval that is a
three-element chain.

Problem 23 (Garćıa and Taylor, 1984). Find an uncountable antichain in the
lattice L of interpretability. If you can do that, then find one which is a proper
class.

There do exist proper classes inside L , but the ones we know are all chains.

2005 Comment. In 2002, V. Trnková and A. Barkhudaryan proved [48] that for
every cardinal κ there is an antichain of power κ in L . They also proved that
the existence of a proper-class antichain is equivalent to the negation of Vopěnka’s
principle (a proposed higher axiom of set theory). Thus, in particular, if there is
no measurable cardinal then such a proper class exists, and it is consistent (under
some set-theoretic assumptions) that no such proper class exists.
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Problem 24 (Garćıa and Taylor, 1984). Prove that congruence modularity is a
prime Mal’tsev condition.

Recall that a Mal’tsev condition is a certain kind of filter in the lattice L of
interpretability, and that we call a filter F prime iff F satisfies the following
condition: if x∨ y ∈ F , then x ∈ F or y ∈ F . It is the primeness that is at issue
here.

Here is a more down-to-earth statement of the problem.

Suppose that we are given two finite sets of equations, Σ and Γ , in disjoint lan-
guages. Is it true that if Σ∪Γ is congruence-modular, then either Σ is congruence-
modular or Γ is congruence-modular?

In 1983, S. Tschantz gave a heroic proof of the corresponding result for per-
mutability. The complication that arose from the innocent-seeming equations
p(x, z, z) ≈ x and p(x, x, z) ≈ z is incredible.

By the way, the filter defined by congruence distributivity is not prime: it is a
proper intersection of two Mal’tsev filters.

2005 Comment. The above question remains open. (And indeed the Tschantz re-
sult remains unpublished.) The question—both for permutability and for modularity—
appears on page 58 of Garćıa and Taylor [13]. L. Sequeira proved [36] that terms
of depth 2 alone cannot be used to construct a counterexample to the question.
The assertion (at the end) about congruence-distributivity may be found in [13,
Proposition 35, p.59].

For the next problem we need some definitions. Let W be a word in alphabet
Σ and U a word in alphabet Σ′ . We say that W avoids U iff no image of U
[by a semigroup homomorphism] is a factor of W . For example, if U = xx and
W = abcdbcde , then W does not avoid U , since W has the factor bcd ·bcd , which
is the image of xx under the homomorphism that takes x to bcd . We call U Σ -
avoidable iff there is an infinite word W on the alphabet Σ that avoids U . If U
is Σ -avoidable for some Σ that has ≤ n letters, then U is said to be n -avoidable.
Finally, we say that U is avoidable iff U is n -avoidable for some n .

Problem 25 (G. McNulty, around 1974). Is there a largest N such that there is
an N -avoidable word (as defined above) that is not (N−1) -avoidable? If so, what
is it?

So far we know that N ≥ 4 . The following word is 4-avoidable but not 3-
avoidable:

U = ab · w · bc · x · ca · y · ba · z · ac.

Words that avoid xx are called square-free and have played an important role
in some investigations of dynamical systems. Thue’s infinite square-free word on
three letters was useful in the Burris-Nelson result that the subvariety lattice of the
variety of semigroups satisfying x2 ≈ x3 has a sublattice isomorphic to the infinite
partition lattice.
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2005 Comment. We now have N ≥ 5 . R. J. Clark proved in 2001 that

W = abebafacgbchcdaidcd

is 5-avoidable but not 4-avoidable (see [7]). Yet it still seems difficult to continue
to N ≥ 6 . The 4-avoidable word U written above appears in Baker, McNulty
and Taylor [2]. By the way, the dots appearing in our description of U have no
mathematical content; they are there simply as punctuation. (See [2] or [7] for
reasons why such punctuation is helpful conceptually.)

Avoidance of x2 (using three letters) and x3 (using two letters) goes back to
Thue in 1906—see [46] and [47]; see also the 1944 work of Morse and Hedlund [30].
Avoidance made an appearance in the 1968 Novikov-Adian solution of the Burnside
problem—see [1]. The first statement of the general definition appeared in 1979 in
Bean, Ehrenfeucht, McNulty—see [4]. An equivalent definition was independently
given in 1984 by Zimin [51]. Problem 25 was first published in 1989—see [2].

The Burris-Nelson result mentioned above appears in [6]. For two other inter-
esting algebraic applications of avoidability, see Ježek [19] and Sapir [35].

Problem 26. Do the following conditions on an algebra A imply that A is
uniquely factorable under direct product?

(1) A has a one-element subalgebra.
(2) Con A is modular.
(3) Con A has finite height.

Factorization refers here to an isomorphism between A and a product B1×· · ·×
Bk , with each Bi product-indecomposable. Uniqueness means that the factors in
any one factorization correspond bijectively to the factors in any other factorization,
with corresponding factors isomorphic. The indicated result holds either if we
strengthen (2) to congruence permutability (Ore and Birkhoff), or if we strengthen
(3) to say that A is finite (Jónsson). There are numerous examples to show that
the assertion is false if (1) is not assumed.

2005 Comment. This problem was later stated on page 276 of McKenzie, Mc-
Nulty, Taylor [26]. For the Birkhoff-Ore Theorem see [26, Theorem 5.3], and for
Jónsson’s Theorem see [26, Theorem 5.4]. The presentation in [26] attempts par-
allel proofs of the two results, but is nevertheless unable to solve our Problem 26.
For some counterexamples that involve possible weakenings of (1–3), see [26, pp.
264–267].

The proof of Jónsson’s Theorem in [26] uses Lemma 4 [26, pp. 270] which states
that if A is finite and if α × α′ = β × β′ = α ∧ β′ = α′ ∧ β in Con A , then
also α × β′ exists and equals α × α′ . It is noted in [26] that if the hypothesis
of Lemma 4 could be weakened to Con A is modular and of finite height then
Problem 26 would have a positive answer. Freese [11] shows that if there is no
homomorphism from the sublattice generated by {α, α′, β, β′} onto M4, then the
strengthened Lemma 4 is true. In [12] Freese gives an example showing the desired
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strengthening of Lemma 4 is false. However, this example is not a counterexample
to Problem 26.

Problem 27 (J. Mycielski, G. McNulty et al.). Does there exist an algorithm to
determine whether a semigroup word is universal? Does there exist a semigroup
word that is universal in one infinite power but not all infinite powers? How about
the same questions for finite sets of semigroup words?

A semigroup word is a finite sequence of letters a1a2a3 · · · an selected from a
finite alphabet Σ. It is universal in power κ iff the following is true: for every
function F : κ −→ κ there exists a map Σ −→ κκ , denoted a 7−→ a , such that
F = a1◦a2◦· · ·◦an . A word is called universal iff it is universal in power κ for
every infinite κ . The extension of these definitions to finite or infinite sets of words
is more or less obvious. (Given words F0 , F1 , . . . , there must exist a single map
Σ −→ κκ such that each Fi is represented in the manner described above.)

(Let w1 , w2 , . . . be a family of words in two letters u and v that is universal in
every infinite power κ . (Such a family exists, by Sierpiński [37].) The universality of
a1a2a3 · · · an in power κ is clearly equivalent to the universality of w1w2w3 · · ·wn

(the concatenation of the words wi ) in power κ . Thus it is enough to consider the
above problems for two letters only, i.e. for |Σ| = 2 .)

In 1979 W. Taylor answered both the decidability question and the infinite pow-
ers question for universality as defined for finite sequences of terms involving func-
tions of more than one variable. In that larger context, universality is not decidable,
and the class of infinite κ for which a given finite set of terms is universal can be
arbitrarily wild. Needless to say, the proofs there made essential use of binary (and
higher) functions. The only evidence in the unary case is the work of Don Silberger
(et al.): they have characterized universality for some very short semigroup words;
the rapid growth in complexity of these partial answers lends some credence to the
idea of recursive undecidability in the unary case.

2005 Comment. Nothing further is known on the above problem. In its general
form (involving sets of operations of arbitrary arities), the algorithmic question was
first stated by G. McNulty in 1976—see [29, page 205]. Taylor’s (negative) solution
to that problem appeared in 1979—see [42]. The possibility still remains of an
algorithm for the restricted problem involving unary functions only. That is the
(algorithmic) question that is asked here.

The question about the class of infinite powers over which a word is universal is
stated by Isbell in [18] and attributed there to Mycielski. The problem is restated
in McNulty [29, page 205], and extended there to sets of terms of arbitrary arity
(solved by Taylor in [42]). One may consult McNulty [29, §2] for a compendium of
most of the known general facts about, and constructions of, universal sets. The
open problems there [loc. cit., pp. 228–9] overlap with all the problems mentioned
here (and indeed go further). The early work of Silberger (and co-workers) may be
found in [10] and its references.

Examples of universal sets of terms were presented in 1934 by Sierpiński [37], in
1935 by Banach [3], in 1949 by Hall [15], in 1950 by  Loś [21], and in 1966 by Mal’tsev
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[24]. These papers apply the existence of such universal sets to various problems
in algebra and logic. Some universal sets of terms were useful to G. McNulty [28]
[29] in his studies on algorithmic properties of sets of equations. For universality of
terms in the context of topological spaces, see W. Taylor [43, Chapter 4].

One can define universality of group terms by putting the symmetric group on
κ in place of the semigroup κκ . Ore [34] showed the group term xyx−1y−1 uni-
versal; the set of all universal group terms was determined by Lyndon [23]; see also
Dougherty and Mycielski [9].
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[27] R. McKenzie and S. Świerczkowski, Non-covering in the interpretability lattice of equational
theories, Algebra Universalis 30 (1993), 157–170.

[28] G. McNulty, Undecidable properties of finite sets of equations, J. Symbolic Logic 41 (1976),
9–15.

[29] The decision problem for equational bases of algebras, Ann. of Math. Logic 11

(1976), 193–259.
[30] M. Morse and G. Hedlund, Unending chess, symbolic dynamics, and a problem in

semigroups, Duke Math. J. 11 (1944), 1–7.

[31] J. Mycielski, Some compactifications of general algebras, Colloq. Math. 13 (1964), 1–9.
[32] J. Mycielski and C. Ryll-Nardzewski, Equationally compact algebras (II ), Fund. Math. 61

(1968), 271–281.

[33] W. D. Neumann, On Mal’cev conditions, J. Aust. Math. Soc. 17 (1974), 376–384.
[34] O. Ore, Some remarks on commutators, Proc. Amer. Math. Soc. 2 (1951), 307–314.

[35] M. Sapir, Inherently non-finitely based semigroups, Mat. Sb. (N.S.), 133 (175) (1987),

154–166, 270 (Russian).
[36] L. Sequeira, Is modularity prime?, Ph.D. thesis, Universidade de Lisboa, 2002. An abstract

may be viewed at http://www.lmc.fc.ul.pt/∼lsequeir/math/extabstract.pdf .
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